vignettes/simulation.Rmd
simulation.RmdIn epiffiter, opposite to the fit_ functions (estimate parameters from fitting models to the data), the sim_ family of functions allows to produce the DPC data given a set of parameters for a specific model. Currently, the same four population dynamic models that are fitted to the data can be simulated.
The functions use the ode() function of the devolve package (Soetaert,Petzoldt & Setzer 2010) to solve the differential equation form of the e epidemiological models.
The sim_ functions, regardless of the model, require the same set of six arguments. By default, at least two arguments are required (the others have default values)
r: apparent infection raten: number of replicatesWhen n is greater than one, replicated epidemics (e.g. replicated treatments) are produced and a level of noise (experimental error) should be set in the alpha argument. These two arguments combined set will generate random_y values, which will vary randomly across the defined number of replicates.
The other arguments are:
N: epidemic duration in time unitsdt: time (fixed) in units between two assessmentsy0: initial inoculumalpha: noise parameters for the replicatesLet’s simulate a curve resembling the exponential growth.
exp_model <- sim_exponential( N = 100, # total time units y0 = 0.01, # initial inoculum dt = 10, # interval between assessments in time units r = 0.045, # apparent infection rate alpha = 0.2,# level of noise n = 7 # number of replicates ) head(exp_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01000000
## 2 1 10 0.01568425 0.01594221
## 3 1 20 0.02459905 0.02477225
## 4 1 30 0.03858028 0.03559417
## 5 1 40 0.06050749 0.07083290
## 6 1 50 0.09489670 0.10802466
A data.frame object is produced with four columns:
replicates: the curve with the respective ID numbertime: the assessment timey: the simulated proportion of disease intensityrandom_y: randomly simulated proportion disease intensity based on the noiseUse the ggplot2 package to build impressive graphics!
exp_plot = exp_model %>% ggplot(aes(time, y)) + geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) + geom_line(size = 1) + theme_minimal_hgrid() + ylim(0,1)+ labs( title = "Exponential", y = "Disease intensity", x = "Time" ) exp_plot
## Warning: Removed 4 rows containing missing values (geom_point).

The logic is exactly the same here.
mono_model <- sim_monomolecular( N = 100, y0 = 0.01, dt = 5, r = 0.05, alpha = 0.2, n = 7 ) head(mono_model)
## replicates time y random_y
## 1 1 0 0.0100000 0.01181973
## 2 1 5 0.2289861 0.18321739
## 3 1 10 0.3995322 0.48066834
## 4 1 15 0.5323535 0.57142173
## 5 1 20 0.6357949 0.55775762
## 6 1 25 0.7163551 0.71959049
mono_plot = mono_model %>% ggplot(aes(time, y)) + geom_jitter(aes(time, random_y), size = 3, color = "gray", width = .1) + geom_line(size = 1) + theme_minimal_hgrid() + labs( title = "Monomolecular", y = "Disease intensity", x = "Time" ) mono_plot

logist_model <- sim_logistic( N = 100, y0 = 0.01, dt = 5, r = 0.1, alpha = 0.2, n = 7 ) head(logist_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01000000
## 2 1 5 0.01638216 0.01983962
## 3 1 10 0.02672677 0.02984366
## 4 1 15 0.04331509 0.02364864
## 5 1 20 0.06946352 0.06631386
## 6 1 25 0.10958806 0.11027489
logist_plot = logist_model %>% ggplot(aes(time, y)) + geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) + geom_line(size = 1) + theme_minimal_hgrid() + labs( title = "Logistic", y = "Disease intensity", x = "Time" ) logist_plot

gomp_model <- sim_gompertz( N = 100, y0 = 0.01, dt = 5, r = 0.07, alpha = 0.2, n = 7 ) head(gomp_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01254931
## 2 1 5 0.03896283 0.03637617
## 3 1 10 0.10158896 0.10442916
## 4 1 15 0.19958740 0.22298368
## 5 1 20 0.32122825 0.31664090
## 6 1 25 0.44922018 0.37424327
gomp_plot = gomp_model %>% ggplot(aes(time, y)) + geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) + geom_line(size = 1) + theme_minimal_hgrid() + labs( title = "Gompertz", y = "Disease intensity", x = "Time" ) gomp_plot

Use the function plot_grid() from the cowplot package to gather all plots into a grid
plot_grid(exp_plot, mono_plot, logist_plot, gomp_plot)
## Warning: Removed 4 rows containing missing values (geom_point).

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25. DOI: 10.18637/jss.v033.i09