Simulate a stochastic epidemic curve using the Exponential model.

sim_exponential(N = 10,dt = 1, y0 = 0.01, r, n,  alpha = 0.2)

Arguments

N

Total time course of the epidemic

dt

Time step

y0

Initial inoculum or initial disease intensity

r

Infection rate

n

Number or replicates or sample size for each time step

alpha

Variation parameter. stands for the variation for the replicates for each time step. The standard deviation is calculated as sd = alpha * y * (1 - y), being y the disease intensity for each time step.

Value

rep

Replicates

time

Time after epidemic start

y

Disease intensity

random_y

Disease intensity after applying the random alpha error

Examples

sim_exponential(N = 30, y0 = 0.01,dt = 5, r = 0.1, alpha = 0.5, n = 4)
#> replicates time y random_y #> 1 1 0 0.01000000 0.01000000 #> 2 1 5 0.01648856 0.01000000 #> 3 1 10 0.02718643 0.03493075 #> 4 1 15 0.04482448 0.04179760 #> 5 1 20 0.07390504 0.16265086 #> 6 1 25 0.12185136 0.11946064 #> 7 1 30 0.20090235 0.27018748 #> 8 2 0 0.01000000 0.01014001 #> 9 2 5 0.01648856 0.01036081 #> 10 2 10 0.02718643 0.02975272 #> 11 2 15 0.04482448 0.01000000 #> 12 2 20 0.07390504 0.12806098 #> 13 2 25 0.12185136 0.13118842 #> 14 2 30 0.20090235 0.41914375 #> 15 3 0 0.01000000 0.01237755 #> 16 3 5 0.01648856 0.01063556 #> 17 3 10 0.02718643 0.03548816 #> 18 3 15 0.04482448 0.02388926 #> 19 3 20 0.07390504 0.02758012 #> 20 3 25 0.12185136 0.13960792 #> 21 3 30 0.20090235 0.15637316 #> 22 4 0 0.01000000 0.01000553 #> 23 4 5 0.01648856 0.01710145 #> 24 4 10 0.02718643 0.01917294 #> 25 4 15 0.04482448 0.03207934 #> 26 4 20 0.07390504 0.06890985 #> 27 4 25 0.12185136 0.19362711 #> 28 4 30 0.20090235 0.04785827