fit_nlin2.Rd
Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) using nonlinear approach for estimate parameters. This function also estimates the maximum disease intensity parameter K.
fit_nlin2(time, y, starting_par = list(y0 = 0.01, r = 0.03, K = 0.8), maxiter = 50)
time | Numeric vector which refers to the time steps in the epidemics. |
---|---|
y | Numeric vector which refers to the disease intensity. |
starting_par | starting value for initial inoculun (y0) and apparent infection rate (r), and maximum disease intensity (K). Please informe in that especific order |
maxiter | Maximun number of iterations. |
set.seed(1) epi1 <- sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 4) data = data.frame(time = epi1[,2], y = epi1[,4]) fit_nlin2(time = data$time, y = data$y, starting_par = list(y0 = 0.01, r = 0.03, K = 1), maxiter = 1024)#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Warning: NaNs produzidos#> Results of fitting population models #> #> Stats: #> CCC r_squared RSE #> Gompertz 0.9950 0.9909 0.0438 #> Logistic 0.9923 0.9860 0.0539 #> Monomolecular 0.8960 0.8361 0.1797 #> #> Infection rate: #> Estimate Std.error Lower Upper #> Gompertz 0.2630455 0.02071581 0.22038054 0.22038054 #> Logistic 0.3661332 0.03408759 0.29592845 0.29592845 #> Monomolecular 0.0682291 0.02690929 0.01280837 0.01280837 #> #> Initial inoculum: #> Estimate Std.error Lower Upper #> Gompertz 1.017021e-12 7.351869e-12 -1.412444e-11 1.615848e-11 #> Logistic 5.304329e-03 2.520782e-03 1.126822e-04 1.049598e-02 #> Monomolecular -1.487701e-01 8.495704e-02 -3.237424e-01 2.620220e-02 #> #> Maximum disease intensity: #> Estimate Std.error Lower Upper #> Gompertz 1 0.01936234 0.9601225 1.039877 #> Logistic 1 0.02080931 0.9571424 1.042858 #> Monomolecular 1 0.19490764 0.5985802 1.401420