Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) using nonlinear approach for estimate parameters.

fit_nlin(time,
  y,
  starting_par = list(y0 = 0.01, r = 0.03),
  maxiter = 50)

Arguments

time

Numeric vector which refers to the time steps in the epidemics

y

Numeric vector which refers to the disease intensity

starting_par

Starting value for initial inoculun (y0) and apparent infection rate (r). Please informe in that especific order

maxiter

Maximun number of iterations

Author

Kaique dos S. Alves

Examples

set.seed(1) epi1 <- sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.5, n = 4) data = data.frame(time = epi1[,2], y = epi1[,4]) fit_nlin(time = data$time, y = data$y, starting_par = list(y0 = 0.001, r = 0.03), maxiter = 1024)
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Warning: NaNs produzidos
#> Results of fitting population models #> #> Stats: #> CCC r_squared RSE #> Gompertz 0.9950 0.9909 0.0429 #> Logistic 0.9923 0.9860 0.0529 #> Monomolecular 0.8960 0.8361 0.1762 #> Exponential 0.8795 0.8131 0.1880 #> #> Infection rate: #> Estimate Std.error Lower Upper #> Gompertz 0.26304504 0.015218902 0.23176214 0.23176214 #> Logistic 0.36613264 0.028677439 0.30718532 0.30718532 #> Monomolecular 0.06822917 0.008441786 0.05087684 0.05087684 #> Exponential 0.06438233 0.008534818 0.04683876 0.04683876 #> #> Initial inoculum: #> Estimate Std.error Lower Upper #> Gompertz 1.017193e-12 5.947383e-12 -1.120783e-11 1.324221e-11 #> Logistic 5.304364e-03 2.219734e-03 7.416344e-04 9.867093e-03 #> Monomolecular -1.487705e-01 7.778021e-02 -3.086500e-01 1.110901e-02 #> Exponential 1.658502e-01 3.643013e-02 9.096701e-02 2.407334e-01