Fits epidemic models (Exponential, Monomolecular, Logistic and Gompertz) to data using data linearization

fit_lin(time,y)

Arguments

time

Numeric vector which refers to the time steps in the epidemics

y

Numeric vector which refers to the disease intensity

Author

Kaique dos S. Alves

Examples

set.seed(1) epi1 <- sim_logistic(N = 30, y0 = 0.01, dt = 5, r = 0.3, alpha = 0.2, n = 4) data = data.frame(time = epi1[,2], y = epi1[,4]) fit_lin( time = data$time, y = data$y)
#> Results of fitting population models #> #> Stats: #> CCC r_squared RSE #> Logistic 0.9982 0.9964 0.1848 #> Gompertz 0.9786 0.9581 0.4304 #> Exponential 0.9326 0.8737 0.5983 #> Monomolecular 0.9318 0.8723 0.5743 #> #> Infection rate: #> Estimate Std.error Lower Upper #> Logistic 0.2963172 0.003491710 0.2891399 0.2891399 #> Gompertz 0.1984260 0.008134087 0.1817061 0.1817061 #> Exponential 0.1516750 0.011307165 0.1284328 0.1284328 #> Monomolecular 0.1446423 0.010852569 0.1223345 0.1223345 #> #> Initial inoculum: #> Estimate Linearized lin.SE Lower Upper #> Logistic 0.0108173681 -4.5157260 0.06294769 0.0095169644 0.012293254 #> Gompertz 0.0002387652 -2.1210668 0.14663934 0.0000127004 0.002091927 #> Exponential 0.0231954412 -3.7637995 0.20384281 0.0152556644 0.035267457 #> Monomolecular -1.1210822598 -0.7519265 0.19564748 -2.1711224375 -0.418737384